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13.0	Uncertainty	of	Measurement	
It is a fact that every measurement has some uncertainty associated with it – how much depends on the measuring instrument used as well as how 
it is used. Calculating the uncertainty of a measurement is important for being assured of: 
 

1. good quality measurements, 

2. whether a specification is likely to be met. 

 
In the next section, we explore more fully what can influence the uncertainty of a measurement and see how to construct an uncertainty budget i.e. 
a list of all possible contributors to the overall uncertainty of a measurement. For now we concentrate on how an uncertainty is calculated.  
 
Estimates of the uncertainty are obtained in one of two ways: 
 

1. from repeated readings – Type A – giving what might termed “repeatability uncertainty” 

2. using information from past experience, calibration certificates, manufacturers’ specifications, calculations derived from manufacturers’ 

information – Type B 

 
These individual estimates of uncertainty can combined to produce an overall uncertainty of measurement. We have already established that we can 
estimate the true value of a measurement by the sample mean 𝑥 of n observations. The uncertainty of this estimate is expressed in terms of a 
“margin of doubt” – i.e. a confidence interval with its level of confidence (as a percentage) to describe the confidence the width of the uncertainty 
confidence level encloses the true value. The confidence level is usually about 95% or about 99.7% (“about” because the measurement estimate 
only approximately follows the normal distribution) giving a confidence interval of: 
 

a. ± 2s/√n for a 95% uncertainty confidence level 

b. ± 3s/√n for a 99.7% uncertainty confidence level 

 
Confidence intervals for the uncertainty of a measurement are sometimes referred to as expanded uncertainty. 
 
(Such expressions are familiar to us from our discussion on the standard error on the means!) 
 
The factors “2” and “3” are commonly known (in measurement circles!) as a coverage factor, k. Whether you choose k = 2 or k = 3 depends upon 
the level of uncertainty you are prepared to accept – either way, the coverage factor must always be stated. By the way, a coverage factor of 1 (k = 
1) would correspond to about a 68% level of confidence. 
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So for example, a CMM with an expanded uncertainty (k = 2) of  ± 0.0002mm measures a length as 121mm and so a 95% uncertainty confidence 
level is 121 ± 0.0002mm. 

	

13.1	Combining	Uncertainties	
In this section we see how to obtain a measure of "overall uncertainty" in a measurement that is subject to more than one source of error. We will 
first discuss the situation where these component errors are combined linearly before summarizing how more involved combinations are treated. 
 
First let us suppose we have two independent random variables X and Y with means µx and µy and variances var(X) and var(Y). Then it can be 
shown that 
 

(a) for the sum X + Y, the mean is given by µx + µy and the variance of X + Y is var(X) +var(Y); 

(b) for the difference  X – Y, the mean is given by µx - µy and the variance of X - Y is var(X) + var(Y). 

 
We will illustrate the second of these results for two simple random variables X and Y given by: 
 

X is equally likely to take the values 4  5  5  6. 

Y is equally likely to take the values 1  2  3 

 
Now µx = 5 and var(X) = ½ while µy = 2 and var(Y) = ⅔. 
 
The possible (equally likely) values of the random variable X - Y are: 
 

1  2  2  2  3  3  3  3  4  4  4  5. 
 
 
Activity 13.1 Calculate the mean and the variance of X - Y and hence verify the statement in (b) above. 
 
How can these results be used in a practical situation to obtain an overall measure of uncertainty? Well, suppose we have three independent 
sources of error in a measurement that combine additively to form the "final" error. Then if these errors are represented by the random variables X, 
Y and Z the total variance is given by var(X) + var(Y) + var(Z). Thus if we have estimates for the three standard errors, sex, sey and sez a measure of 
the overall uncertainty is given by 
 

3 𝑠𝑒!! + 𝑠𝑒!! + 𝑠𝑒!! 
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Note that for calibration errors we would use a theoretical standard deviation in place of a standard error. For example, suppose that in a particular 
measurement two sources of error have been identified, an elementary systematic error and a measurement error. The elementary systematic error 
is quoted as 0.2 and thus the standard deviation of the resulting error is given by 0.2/√3 (using the result for the standard deviation of a uniform 
distribution over (-0.2, 0.2) ), while the standard error of the measurement error has been estimated by experiment as 0.16. Using the result above 
we can estimate the overall uncertainty as being 
 

3 !.!
√!

!
+ 0.16! = 0.77 

 
Of course, the above only holds if the component errors (the random variables, in the statistical jargon) are independent. If any of the component 
sources of error are related then naturally we cannot use the above formula since it is based on independence.  
 
Suppose we have two random variables i.e. sources of error, X and Y that are believed to be dependent. Then it can be shown that 
 

var(X ± Y) = var(X) + var(Y) ± 2cov(X, Y).  
 
The cov(X,Y) is estimated from the observed measurements using the formula 
 

cov(X, Y) = (X −  𝑋)(Y −  𝑌)  
        n - 1  
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13.2	Case	Study:	Calibration	of	a	Thermocouple	
 
The situation is summarised in Figure 13.1. 
 

 
 
 
Here we have identified four sources of error. The probable sizes of three of these are quoted by the manufacturer, Fluke. However, in this case a 
quoted error of 0.13oC (say) does not relate to an elementary systematic error but to the "effective range" of a normal distribution as illustrated in 
Figure 13.2. 
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From this we derive an estimate for σ of 0.13/3. 
 
The four sources of error are: 
 

1. The Standard (fixed) with a quoted error of ± 0.13oC giving an estimated standard deviation of s1 = 0.13/3. 
 

2. The Standard (variable) with a quoted error of 0.13oC giving an estimated standard deviation of s2 = 0.13/3. 
 

1. The voltmeter which has a quoted error of 0.13oC giving a standard deviation of s3 = 0.13/3. 
 

2. The repeatability error (se5) that is estimated from five readings. 
 

Thus our overall uncertainty of a measurement is given by: 
 
 he =  3√{s1

2 + s2
2 + s3

2 + s4
2 +s5

2 } 
 
The table below gives the results of the experiment. 
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standard  standard   Voltmeter   repeatability  uncertainty 
(variable)  (fixed)    readings   error 
Xo   Sf  Xi   x  x   se5   se5  he 
oC   oC  mV   mV  oC   mVx10-4  oC  oC 
60.11   22.42  1.555 
60.11   22.42  1.554 
60.11   22.42  1.554   1.554  60.33   7.071   0.020 
60.11   22.42  1.554 
60.11   22.42  1.553 
 
99.75   21.95  3.240 
99.75   21.95  3.239 
99.75   21.95  3.239   3.2396  100.51   5.477   0.013 
99.75   21.95  3.240 
99.75   21.95  3.240 
 
124.37   22.30  4.246 
124.37   22.30  4.247 
124.37   22.30  4.246   4.246  125.32   7.071   0.020 
124.37   22.30  4.245 
124.37   22.30  4.246 
 
151.19   22.62  5.321 
151.18   22.62  5.322 
151.19   22.61  5.322   5.322  152.19   7.071  0.020 
151.19   22.62  5.323 
151.19   22.62  5.322 
 
181.74   21.77  6.571 
181.73   21.77  6.572 
181.74   21.77  6.571   6.5714  182.57   5.477   0.013 
181.74   21.77  6.572 
181.74   21.77  6.571 
 
196.64   22.36  7.141 
196.64   22.36  7.142 
196.64   22.36  7.141   7.141  197.43   7.071   0.020 
196.64   22.36  7.140 
196.64   22.36  7.141 
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Activity 13.2 Verify that the uncertainty of measurement for the first row of the above table is 0.2303. Calculate the uncertainties for the remaining 
rows. Comment on the results. 
 

13.3	Estimating	the	Standard	Error	of	a	Compound	Quantity	
We conclude this module with the a table giving (approximate) standard errors for quantities which consist of products and other functions of two or 
more measurable quantities. 
 
Suppose we have independent measurable quantities A, B, C etc whose means are ma, mb, mc etc. and whose standard errors are αa, αb, αc etc. 
respectively. Then the standard error of: 
 

(a) the sum A +B is √{  αa
2 + αb

2 } 
 

(b) the difference A - B is √{  αa
2 + αb

2 } 
 
  (c) the product AB is √{ mb

2αa
2 + ma

2αb
2 } 

 
(d) the product ABC is √{ mb

2mc
2αa

2 + ma
2mc

2αb
2 + ma

2mb
2αc

2 } 
 
  (e) the quotient A/B is √{ αa

2 + ma
2αb

2 } 
        mb 
 

(f) the power Ap is [ma 
p-1]αa 

 
(g) any function of A, B, ... , Z denoted by f( A, B, ... , Z) is given by α where 

 

α2 =  !"
!"

!
𝛼!! +  !"

!"

!
𝛼!! +⋯ ..  

 
Activity 13.3 A number of measurements of the radius and length of a cylinder have yielded a mean radius of 2.1 cm with a standard error of 0.1 cm 
and a mean length of 6.4cm with a standard error of 0.2cm. Show that the mean volume of the cylinder is approximately 88.7cm3 with a standard 
error of approximately 8.9cm3. What is the overall uncertainty in the measurement of the volume of the cylinder? 
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14.0	The	Measurement	Process	
 
The measurement process is defined in the International Vocabulary of Basic and General Terms in Metrology as all the information, equipment and 
operations relevant to a given measurement (figure 2.1) 
 
 
Figure 14.1 
 
 
 
 
 
In planning for quality of measurement it is necessary to establish the acceptability and capability of the measurement process by calculating the 
uncertainty of measurement. And to do so it is necessary to use methods that identify and take into account the various elementary errors that arise 
in the process. We are therefore looking to identify, quantify and characterise the following; 
 

• elementary errors of the measuring instrument, chain or system (ICS), as appropriate, under fixed reference conditions, 
• elementary errors of the measuring instrument, chain or system (ICS), as appropriate, under variable or ambient conditions (e.g. on site) 
• other elementary errors of the measurement process arising from the definition of the measurand, the method of measurement, the 

operating procedure, the operators, the location and the conditions of use. 
 
All of the elementary errors, contributing to the uncertainty of a measurement result, may be conveniently summarised in the form of a cause and 
effect diagram, as shown in figure 14.2. 
 

Quantity to be 
Measured 

Information 
Equipment 
Operations 

Result of a 
Measurement 
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Figure 14.2 
 
 
 
 
 
Although reference is made to instrument errors in figure 14.2, it could equally have been made with respect to a measuring chain or system, 
depending upon what is actually being used for a particular measurement. Elsewhere in the module where this applies the simple expedient of using 
ICS as an abbreviation for measuring instrument, chain or system will be applied. 

Uncertainty 
of the 

Measurement 
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14.1	Repeatability	and	Reproducibility	of	the	Measurement	Process	
Repeatability and reproducibility are terms that are often confused. It ls important to distinguish between the two and appreciate their role in the 
scheme of things. Both are concerned with the closeness in agreement between the results of successive measurements on the same measurand, 
but differ in the conditions under which the measurements are made. 
 
The REPEATABILITY of measurement is defined (PD6461) as the closeness of agreement between the results of successive measurements 
of the same measurand carried out subject to all of the following conditions; 
 

• the same method of measurement 
 

• the same operator 
 

• the same measuring standard, instrument, chain or system 
 

• the same location 
 

• the same conditions of use 
 

• repetition over a short period of time 
 
REPRODUCIBILITY on the other hand is defined (PD6461) as the closeness of agreement between results of measurements of the same 
measurand, where the individual measurements are carried out changing conditions such as: 
 

• the method of measurement 
 

• the operator 
 

• the measuring instrument 
 

• the location 
 

• the conditions of use 
 

• the time 
 
Note: For the statement of reproducibility to be valid it is necessary to specify the conditions that are changed. 
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Since the conditions of reproducibility are more closely aligned to the circumstances encountered when a measurement is taken "on site", you may 
wonder why we should concern ourselves with the assessment of repeatability. The simple answer is that the repeatability provides us with an 
indication of the best we can get, for a given measurement process, without the additional variability introduced by changes in "outside" influences. If 
the repeatability results indicate that the measurement process is inadequate for the task to be performed, then it is inappropriate to proceed to 
applying it or even to the stage of evaluation under conditions of reproducibility. What is indicated therefore in such situations is a need for a new or 
improved process. 
 
Under conditions of reproducibility information is obtained on the influence of changeable conditions upon the measurement results. In general the 
effect is an increase in dispersion over the results obtained under conditions of repeatability and, quite often, the influence of additional systematic 
components of error (figure 14.3). 
 
Figure 14.3 
 

 
 
 
 
 
 
Equipped with this information appropriate actions may be taken to correct for systematic errors and/or seek to reduce dispersion if this is 
considered excessive in relation to the on-site measurement requirements and the tolerance limits specified for the measurand (figure 14.4). 
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Figure 14.4 
 

 
 
 
 
In view of the importance of repeatability and reproducibility it is appropriate to identify the quantitative data that can be determined from these 
operations for the measurement process. 
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14.1.1	Repeatability	of	the	Measurement	Process	
When dealing with the measurement process the procedure requires several measurements to be taken upon the same conventional true value 
(CTV), conventional reference value (CRV) or reference value (RV). From the results obtained it is possible to determine; + the random error of 
repeatability of the measurement process (3sr), 
 

• the systematic error of repeatability of the measurement process, dr = x - CTV, and 
 

• the uncertainty of the measurement result for the measurement process, under the conditions of repeatability,  |dr| + 3sr 
 

14.1.2	Reproducibility	of	the	Measurement	Process	
By performing the measurements on the same CTV, CRV or RV under conditions of on-site variability, the data obtained can be used to determine; 

• the random error of reproducibility of the measurement process, sg, 
• the systematic error of reproducibility of the measurement process, dg, and 
• the uncertainty of the measurement result for the measurement process, under conditions of reproducibility, hg = |dg|  + 3sg  
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15.0	The	Instrument,	Chain	or	System	(ICS)	
Instruments, or in more general terms the Instrument, chain or system (ICS), are integral components of the measurement process. As Indicated 
earlier in the cause and effect diagram of figure 2.2 the ICS is a source of elementary errors that contribute to the overall uncertainty of the 
measurement process. The ICS may be operated under various conditions and it is important to specify these conditions and be aware of the 
implications that they impose. For specifying the utilisation of an ICS the following categories of conditions should be considered; 
 

• rate operated conditions 
 

• limiting operating conditions 
 

• reference conditions. 
 
The international vocabulary of general fundamental metrology terms provides the following definitions for these conditions. 
 

• Rate operated conditions: Operating conditions giving ranges of quantities to be measured, ambient conditions and other important 
requirements for which metrological characteristics of a measuring instrument (ICS) are supposedly maintained within specific limits. 

 
• Limiting operating conditions: Extreme conditions that a measuring instrument (ICS) can withstand without damage and without 

deterioration of its metrological characteristics when it is subsequently used under conditions prescribed for its operation. 
 

• Reference conditions: Conditions of utilisation for a measuring instrument (ICS) prescribed for operational tests or to validly ensure 
comparisons of measurement results between them. The reference conditions are the conditions under which the characteristics of an ICS 
are generally given, but can vary from one manufacturer to another. 

 
In considering the conditions under which an ICS operates, it is important to identify, and consider the influence of, the surrounding or ambient 
conditions, such as temperature, atmospheric pressure, relative humidity, vibrations and shocks, dust and electromagnetic conditions. The 
International Electrochemical Commission (CEI) has produced a classification scheme for ambient conditions and recommendations for their use. 
These are covered more fully in section 16.0. 
 
The errors associated with the instrument (or ICS) under various conditions are evaluated during a calibration procedure. Unfortunately, the 
calibration itself introduces errors that lead to uncertainty in the evaluation of the systematic and random errors of the instrument. To minimise this 
uncertainty it is therefore necessary to reduce the contribution of errors during calibration. Two sets of conditions are generally defined and used for 
calibration, which parallel in many respects the conditions Identified for repeatability and reproducibility of the measurement process. 
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15.1	Evaluation	of	the	ICS	under	reference	conditions	
Because of its central role in deriving a measurement result it is important to know what errors are likely to be introduced by the ICS and how they 
compare with other contributory errors within the measurement process. By calibrating the Instrument (or ICS) under both reference conditions and 
variable conditions this particular Information can be obtained. 
 

Evaluation under the reference conditions requires: 
 
• the same operator, 

 
• the same method of measurement, 

 
• the same location, the same conditions of use, and 

 
• repeated measurement over a short period of time. 

 
Repeated measurements are performed upon the same CTV or CRV and from the data obtained the following information can be derived: 
 

• the systematic error of the ICS, under the reference conditions, df 
 

• the random error of the instrument, under the reference conditions, ef = 3sf, and 
 

• the uncertainty of the ICS, under reference conditions; hf =  |df | + 3sf 
 

15.2	Evaluation	of	the	ICS	under	variable	conditions	
In these circumstances we are concerned with evaluating the ICS under variable conditions such as those encountered on-site, but maintaining: 
 

• same operator, 
 

• same method, and 
 

• same location 
 
By repeating the calibration of an ICS under the variable, but defined, conditions the following information can be obtained: 
 

• the systematic error of the ICS, under the variable conditions, dv 
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• the random error of the ICS, under conditions of reproducibility, ev = 3sv, and 
 

• the uncertainty for the ICS, under conditions of reproducibility; hv = |dv| + 3sv 
 
Having set the scene by drawing attention to the information that can be gained from considering the ICS under reference and variable conditions 
lets now consider the ways in which the elementary errors can be identified, quantified and subsequently characterised for the ICS. 
 

15.3	Identification	of	Elementary	Errors	of	the	ICS	under	reference	and	variable	conditions	
Having established what constitutes the uncertainty of a measurement result under reference and variable conditions it is important to consider 
further the way in which we identify the elementary errors that are likely to be critical in the measurement we are planning. The cause and effect 
diagram presented in section 2.0 (figure 2.2) provides a useful guide to what we should be looking for, but we need to go deeper, by looking more 
closely at the contributory branches. We need to identify all the errors Inherent in the measuring instruments to be used within the measurement 
process, that are likely to have a noticeable influence upon the overall uncertainty of the measurement result. These errors may be static or dynamic 
errors, including, for example: 
 

• non-linearity errors 
 

• hysteresis errors 
 

• errors in resolution 
 

• zero or bias errors 
 

• response time errors, and so on. 
 
The information we need to identify these errors is obtained through evaluation and an important source of such Information is the evaluation report 
for the measuring element or elements concerned. If appropriately produced this will include detailed reference to errors and their representative 
values. 
 
In the event that an evaluation report is not available it is then necessary to refer to manufacturer test results, if available, or possibly to the technical 
documentation for the element or elements concerned. If it is not possible to obtain the Information form these sources it may then be necessary to 
undertake tests or even a full evaluation of the element concerned using procedures identical to those used in calibration. 
 
Once we have identified the elementary errors within our measurement process we then need to assign values and express them in a way that is 
both meaningful and useful. Two particular ways may be identified for doing this: 

• by expressing the maximum error values in the form ±emax, or 
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• by estimating, from a series of measurements, the standard deviation, sr, 
 
In view of the need to determine the overall uncertainty of the measurement process it is quite usual when presented with only maximum error data 
to express it in the form of what essentially amounts to an "equivalent standard deviation", uj, by using the relationship: 
 

uj =  emax 
3 

 
The justification for this is open to question, but in practice it has been shown to be a useful convention. The assumption on which this relationship is 
based Is simply that the maximum error may be considered to correspond with the difference between the mean and the tail value, three standard 
deviations from the mean, in a normal distribution (figure 15.1). 
 
Figure 15.1 
 

 
 
 
 
 
 
To complete the picture concerning elementary error terms of the ICS under reference conditions it is necessary to characterise them; to specify 
them as either systematic or random in nature. 
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15.4	Characterisation	of	elementary	errors	of	an	ICS	under	reference	conditions	
Having identified the elementary errors of an ICS the next stage in the planning procedure Is to characterise these errors, under conditions of 
reference. In this way we are characterising the Instrument, chain or system unobscured by the influences of outside variable effects. To do this we 
need to determine whether an Identified error is random or systematic in character and ascribed to it a standard deviation, si or an "equivalent 
standard deviation", uj. The diagram shown below summarises the procedure for characterisation. 
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One or two simple examples will illustrate the point. 
 
Linearity error is an example of a systematic error, which can vary over the range of the measurement (figure 15.2). 
 
 

 
Figure 15.2 
 
 
The non-linearity in this case may be expressed as the difference between the ideal output for a given input and the actual output, for a particular 
point within the range, 

N (l) = Oa – Oi 
 
where Oa is the actual output and Oi the output for the ideal straight line relationship. 
 
It can be seen from this that, for a chosen point within the range, the error is fixed and accountable and it is therefore reasonable to consider it as a 
systematic error. In treating it as such it is appropriate to compensate for the effect, in this case requiring a correction table for the full range of the 
measurement or a functional algorithm for automatic correction. Alternatively, it may be acceptable to take account of the errors by quoting or 
applying, in uncertainty terms, the maximum value of error. 
 
Where a residual error is reduced to a small value by correction it is generally treated as a random component in determining the overall uncertainty 
of a measurement result. 
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If the systematic error cannot be corrected it is usual to express the maximum value of the error in terms of an equivalent standard deviation emax = 
3uj 
 
In dealing with random errors within the ICS it is appropriate, where possible, to estimate the standard deviation, si, and so characterise the error in 
this way. However, there may be occasions in which the error may be considered to be random, but in the absence of population data cannot be 
characterised by means of a standard deviation. In these cases it may be appropriate to evaluate a maximum error and express it as an "equivalent 
standard deviation", uj. 
 
It is important to note in expressing either si or ej components that they must be expressed in quantities and units that are consistent for the purpose 
of determining overall uncertainty of a measurement result. 
 

15.5.1	Accuracy	and	Resolution	
 
The reading showing on a car speedometer can be quite dubious! Most of the analogue speedometers look something like the image on the left: 
 

      
 
Over the years, we have that the accuracy of such speedometers varies according to the manufacturer. For instance, a Rolls Royce Silver Shadow 
the true speed is 10% lower than the indicated; with a Skoda Fabia the error is 2% while with a Vauxhall Antara 5%. In other words, all these 
speedometers have non-linear accuracy which if known a correction to the observed speed can be applied to estimate the true speed – this is quite 
useful in a 30mph zone where the police often apply a “zero tolerance”!  
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Is a digital speedometer more accurate? There is an illusion that it is! – a digital number seems better than dial. Well, no! The digital speedometer in 
the Nissan Leaf (electric car) shown above on the right has error of about 11% 
 
Also, digital speedometers have resolution limitations. For example, while an analogue speedometer can theoretically display an infinite number of 
speeds between say, 30 and 40mph, digital speedometers generally display speeds in whole numbers. 
 
Basically, this means that with an analogue speedometer displaying about 28mph the uncertainty of measurement would be estimated from a 
normal distribution having a range of, say, 2mph (estimated while driving!). This would give a resolution uncertainty (error) of 1/3 mph. 
 
On the other hand, with a digital speedometer displaying 28mph the actual recoded speed could be equally likely to lie between 27.5 and 28.4999. 
Thus, to estimate standard uncertainty (error) we would use the result for the uniform distribution with a range (-a, a) that the standard deviation is 
a/√ 3. So with the speedometer having an error range of 1 the resolution uncertainty is 0.5/√ 3. 
 
 

3.5	Documentation	of	elementary	errors	of	an	ICS	identified	under	set	reference	conditions	
Documentation is an essential part of the Quality Assurance process and the importance of good documentation cannot be over emphasised. It is 
important in planning, implementation, control and overall management of the measurement process. 
 
Characterisation of elementary errors for the measurement process can be conveniently summarised in a table below. Such a document would form 
part of a full and comprehensive Measurement Process Documentary Structure (MPDS), which is identified as an ensemble of dossiers used as a 
control document for the measurement process. 
 
The form illustrated In figure 15.4 is suitable for recording identified elementary errors of reference quantities and the other elementary errors 
encountered in a measuring process, as well as errors of the ICS or the elements of a measuring chain. In the particular example shown the facility 
is provided for specifying whether the error is random or systematic, and how the systematic component is treated if corrected or uncorrected. The 
table also has columns for entering the appropriate values of uj or si. 
 
In considering the entries for si and uj the procedure is as follows: 
 

• For random errors, where distribution data is unavailable, the maximum error is entered in the "random" column and the same value divided 
by 3 is entered into the uj column. 

 
• For random errors, where distribution data is available, the estimator value (standard deviation) is entered in the random column and again 

within the si column.  
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• For systematic errors that are uncorrected, the value of the maximum error is entered into the "uncorrected column" and an equivalent 
standard deviation value of one-third the maximum error is entered in the uj column. 

 
• For systematic errors that are corrected, the value following correction Is entered Into the "corrected" column and an equivalent standard 

deviation value, of one third the corrected value, is entered into the uj column. 
 
The implication arising from the treatment of systematic maximum errors as equivalent standard deviations is that they are being viewed as random 
components. However, care has to be exercised in handling these components in deriving values for uncertainty. The distinction on the basis of 
being either si or uj allows us to do this and in combining them to obtain a value of uncertainty the process of quadrature addition is applied. Thus, 
for a series of si components to be combined with a series of uj components, to obtain an uncertainty value, hr, the expression used is: 
 

hr  = 3 𝑠!! +  𝑢!! 
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16.0	Uncertainties	of	Measurement	of	the	Measurement	Process	
So far the identification, quantification and characterisation procedure has been considered for the ICS under reference and variable conditions. Full 
consideration of the measurement process, under the conditions of reproducibility, requires broader attention to influential factors, by the planners of 
the measurement process in association with the person or persons who specified the need for the measurement. 
 
Within the range of considerations to be applied to the planning of the measurement process and the identification of elementary errors will be the 
following: 
 

• the measurand and how it may be Influenced by variable conditions, and 

• the most influential variable conditions to be included in the assessment of uncertainty. 

  

16.1	Elementary	Errors	and	Uncertainty	of	the	measurement	process	
In determining the elementary errors of the measurement process various tests may have to be applied to estimate the values and their respective 
influence upon the measurement process. These errors, due to the variable conditions of reproducibility, must be characterised as random or 
systematic components and expressed in the form of estimators of their respective standard deviations, si and uj,. as described in section 3.4, for the 
ICS. 
 
Using the table, described in section 15.5, a complete listing of the si and uj values can be assembled, and so provide the following information: 
 

• errors associated with a particular standard, certified reference or reference value, and otherwise known as the errors of reference, 
• errors of the ICS under variable ambient conditions, and 
• the other errors of the measurement process due to the variable conditions of reproducibility. 

 
To complete the table it is also appropriate to specify corrections that can be applied to Identified systematic errors. 
 
Once the "error table" or uncertainty budget has been completed, the uncertainty of the measurement process can be calculated, and expressed in 
the form, 
 
   hg =  |dg|  + 3sg 
 
where dg is the systematic error in the process after corrections, where possible, have been applied. 
 
The result of a measurement may then be expressed as 
 
    result = corrected result + uncertainty (hg) 
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16.2	Case	Study	-	Measurement	of	a	Tenon	component	using	a	Vernier	Caliper	
The following case study provides a description of the procedures for identification and calculation of the following; 
 

• Random error 
• Systematic error 
• Standard deviation 
• Uncertainty of measurement 

 
The study is based upon the measurements obtained from an aluminum tenon component, illustrated in Figure C1. 
 
Figure C1 

 
 
 
 Measurements were made using a vernier caliper having the following characteristics; 
 

• Measurement range: 0 - 400mm 
• Resolution: 0.02mm 
• Errors (in reference conditions: 20°C ± 0.5°C, 55% humidity ±5%): ± (20 +0.02L) x10-3mm where L = length measured 
• Errors (in variable temperature conditions): 11.5µm °C-1 m-1 for steel) 

 
Considering further the errors inherent in the vernier, the ISO Standard for Vernier Callipers (ISO 6906) states that for a vernier caliper capable of 
reading to 0.02mm the maximum error in reading may be obtained from the expression: 
 
  e = ± (20 + 0.05L) x 10-3µm 
 
where L is the length measured, which in this case is 19.5 mm. 
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Hence the error, e  = ± (20 + 0.05 x 19.5) µm 
    = ± 20.975µm 
 
The measurements on the component were taken at 27°C, 7°C above the reference temperature, making It necessary to consider the influence of 
the expanded vernier on the measurement result. Taking the temperature coefficient of linear expansion for the steel caliper as 11.5 mm°C-1 m-1, the 
expansion value is, 
 
   (11.5x 7) x 19.5x 10-3µm = 1.57µm 
 
The vernier error and the associated error due to temperature together constitute the instrumentation errors involved in the measurement. 
 
Turning now to the process errors, consideration has to be given to: 
 

• the influence of temperature on the component dimensions 
• error in the definition of the component dimensions 
• error in the method of measurement, and 
• the operator error 

 
The temperature coefficient of expansion for aluminum is roughly twice that of steel, being approximately 23µm °C-1 m-1. Thus for a 7°C rise above 
the reference conditions the aluminum expands, 
 
    23 x 7 x 19.5x 10-3µm= 3.14µm 
 
 
In considering the implications of expansion for both the vernier and the component it can be seen that the overall error from these two sources is 
1.57µm. This is because the vernier expanded by 1.57µm and the aluminum by twice this value, so that half of the error associated with the 
component expansion is, in this case, cancelled out by the expansion in the vernier. 
 
In addition to the Influence of temperature on the aluminum component it was also established that an uncertainty In the definition of the size of the 
component could be ascribed, adding an extra 2.5µm to the possible error. This, together with an identified error In the measuring process of 10µm, 
is presented in the table below. 
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 Error Description Error Value u s = u/3 
Instrument 
Errors 

Vernier Error 
(ISO 6906) 
 
Expansion  
Error 

20.975 µm 
 
 
1.57 µm 

20.975 µm 
 
 
1.57 µm 

6.992 µm 
 
 
0.52 µm 

Process 
Errors 

Expansion Error 
 
Error in definition of 
component dimension 
 
Error in method of 
measurement 
 
Operator Error 
 

3.14 µm 
 
2.5 µm 
 
 
10 µm 
 
 
10 µm 

 
 
2.5 µm 
 
 
10 µm 
 
 
10 µm 

 
 
0.83 µm 
 
 
3.33 µm 
 
 
3.33 µm 

 
 
In looking at the combination of "error components" to determine uncertainty for the measurement it Is necessary, first of all, to determine which are 
systematic errors and which are random. All but the operator errors are In this case considered random, and treated accordingly. Thus the standard 
deviation for the process is: 
 
  s = √ [48.88 + 0.27 + 0.69 + 11.09] µm 
    = √60.93 µm 
    = 7.61 µm 
 
The uncertainty due to these errors, expressed at the 99.73% confidence level is 
 

3s = 23.42 µm 
 
But this excludes the influence of the systematic error due to the operator. To include this it is simply necessary to add it algebraically to the 
uncertainty value estimated above. Hence, the total uncertainty of the measure is, 
 
   hg = (10 + 23.42) µm 
        = 33.42 µm 
 
Should it be considered appropriate to treat the operator error as a random component, and in the absence of any other systematic error, the 
uncertainty is  
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  s = 3 √[ 48.88 + 0.27 + 0.69 + 11.09 + 11.09] 
        = 25.47µm 
  

16.3	Uncertainty	Calculations	for	Direct	Methods	of	Measurement	
The method of measurement has an important and direct bearing upon the uncertainty of the measurement process. Where a single measurand is 
involved and the value is obtained directly, without recourse to measurement of other quantities functionally related to the measurand, the estimation 
of uncertainty is straight forward; as indicated in 15.1 above and summarised in figure 16.1. The latter covers the procedure completely, from the 
identification of the elementary errors of the measurement process, through to characterisation, summary and calculation of uncertainty. 
 

16.4	Uncertainty	Calculations	for	Indirect	Methods	of	Measurement	
Where the value of measurand is obtained from the measurement of other quantities, functionally related to the measurand, the method is 
considered to be indirect. Thus a quantity, G, may be determined as a function of other quantities, G1, .. Gn, through a functional relationship, 
 
  G = f(G1, ...  Gn) 
 
where f ( ) represents the function concerned. 
 
An example of an indirect method of measurement is the measurement of pressure, P, based upon separate measurements of force, F, and 
surface area, A, according to the functional relationship P = F/A. 
 
Under such circumstances particular considerations have to be applied in calculating the uncertainty of measurement. First and foremost is the need 
to establish whether the components used in estimating the value of the measurand are functionally independent of one another, or otherwise 
dependent. It is also necessary to establish if the errors involved are statistically independent, or not, of the quantities concerned. Having 
established these facts it is further necessary to decide if we want to obtain the maximum uncertainty or the most likely uncertainty for the 
combination. The former is dealt with in the annex to this module. To estimate the most likely uncertainty values it is necessary to determine 
standard deviation values and combine them in accordance with the rules applied in the analysis of variance. 
 

5.4.1	Functionally	independent	quantities	
To be functionally Independent, the quantities within a given expression should not exhibit errors that are related one to the other. 
 
If all of the quantities of an expression, G = f(G1, ... Gn) are found to be functionally independent each component of error for G1 ...  Gn, can 
be treated independently, in the same manner as a direct measurement. Thus, the standard deviation values may be obtained for each component 
and then combined using the root-sum-square rule. Should all the errors for an indirect measurement, expressed in the form of standard deviation 
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estimators, be statistically independent of the components, G1, ...  Gn, the variance expression can be readily determined from the function 
concerned. 
 
The most common functions encountered are sum and difference expressions, products and quotients. Consider, for example, the expression 
 
    G = aG1 + bG2 - cG3 
 
Here we have a sum and difference expression in which a, b and c are constants and G1, G2 and G3 are variables. Standard deviation values, s1, s2 
and s3, may be determined for each of the variables and combined in accordance with the expression 
 
  sg = √{(as1)2 + (bs2)2 + (cs3)2} 
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For product of the form 
 
  G = G1 x G2 
 
Each component will exhibit an uncertainty expressed as 3 x standard deviation. Consequently, G will have an uncertainty, hg, determined by h1 and 
h2 through the function: 
 
 (G + hg)  = (G1 + h1)(G2 + h2) 
   
   = G1G2 + G1h2 + G2h1 + h1h2 
 
The component h1h2 may be considered to be small in comparison with G1h2 and G2h1 and so neglected. 
 
The maximum value of hg is G1h2 + G2h1 while the most likely value for hg is G1h2 - G2h1. 
 
 
Activity Derive the most likely values for sg for the following functions 
 

G = G1/G2  
G = (G1 x G2)/G3 

 
 
In the circumstances where errors are not found to be statistically independent it is necessary to separate dependent and independent errors, sum 
the dependent errors arithmetically and treat the sum as an independent component. Thus, in general terms, 
 
    sg = (∑ Adsd)2 + ∑ (Bisi)2 
 
where (∑ Adsd)2 is the square of the sum of the dependent components and ∑ (Bisi)2 is the sum of the squares of the independent components 
 
 
Activity Given that G = aG1 + bG2 - cG3 and s1 and s2 are statistically dependent determine the expression for sg. 
 
A summary of the procedures for dealing with functionally independent quantities is presented in figures 16.2 and 16.3. 
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16.4.2	Functionally	dependent	quantities	
For functionally dependent quantities the analysis is somewhat more complicated and requires the identification of the dependent relationships. So 
an expression of the form, 
 
  G = f(G1, G2 ...Gn) 
 
would be functionally dependent if relationships exist for each component in respect of common variables, 
 
  G1 = f(x, y, z, t) 
  G2 = f(x, y, z, t) 
  Gn = f(x, y, z, t) 
 
Temperature is often encountered as a variable that renders functional quantities dependent. 
 
Despite the difficulties that may be encountered in handling functionally dependent quantities in an indirect measurement a systematic approach to 
dealing with them can considerably ease the task. 
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